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Universal scaling relations for the thermoelectric power factor of semiconducting nanostructures
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We present a parametric analysis of the thermoelectric power factor of single-carrier semiconductors for
nanowires, thin films, and bulk. We consistently find a reduction in the peak power factor in many-subband
nanostructures compared to bulk, independent of the specific materials parameters, system geometry, or
dimensionality. A universal relation between the optimal power factor and the system size, common to all
single-carrier materials, is developed for nanowires and thin films. The common nonmonotonic trend highlights
the competing effects of quantization and degeneracy on the transport properties of semiconductor nanostructures.
The model predicts decreases of up to 28% and 22% in the peak power factor in nanowires and thin films,
respectively, relative to the bulk value. This study provides insights to successful figure-of-merit enhancement
strategies.
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I. INTRODUCTION

Thermoelectric materials are characterized by their dimen-
sionless figure of merit ZT = σS2T /κ , which depends on the
electrical conductivity σ , Seebeck coefficient S, total thermal
conductivity κ , and the absolute temperature T .1 A large
portion of recent work in the field has focused on synthesis
and characterization of nanostructures for thermoelectric
applications due to two predicted benefits over bulk: (1) an
increase in the thermoelectric power factor (PF = σS2) due
to distortion of the electronic density-of-states (DOS) function
and (2) a decrease in the lattice thermal conductivity κl

as a result of increased phonon boundary scattering. While
improvements in ZT have been demonstrated when moving
from bulk to nanoscale, in most cases this is entirely due to a
substantial decrease in the lattice thermal conductivity, and no
improvement is seen in the electronic transport properties.2–6

The original models for thermoelectric transport in nanos-
tructures, developed in 1993 by Hicks and Dresselhaus,
predicted monotonic increases in PF and ZT with decreasing
system size both in nanowires and in thin films.7,8 The models
assume that the conduction band consists of a single subband,
finding that PF has an r−2 dependence on nanowire radius
(r) and an a−1 dependence on film thickness (a). However,
the single-subband assumption, referred to as the electric
quantum limit,9 is valid only for very small structures in
which the quantum confinement energies are significantly
larger than kBT . For larger structures, additional subbands
have energies close to the Fermi energy and their contribution
to transport cannot be neglected. We recently developed a
many-subband model, which takes into account the additive
effect of these additional subbands, and have shown that in
cylindrical InSb nanowires with r > 17 nm, PF increases
monotonically with nanowire radius in sharp contrast to the
predictions of the previous models.10 The increase in PF was
found to originate from an increase in the electronic DOS as
the number of contributing subbands increases with r . This
trend could not have been identified by calculations based on
the single-subband model.

Given the significant impact the new model may have on
future directions of thermoelectric research, a full analysis of

the many-subband model was carried out in order to identify
the set of circumstances that lead to a clear deviation from the
behavior identified by Hicks and Dresselhaus. Here, we report
room temperature PF calculations as a function of system size
for nanowires with both circular and square cross-sections and
for thin films. Focusing on single-carrier semiconductors, the
effect of varying band parameters on the relation between
power factor and system size is investigated. We provide
evidence that the trends observed in InSb nanowires are
material independent and that size reduction alone rarely
leads to an enhancement in the thermoelectric power factor.
The analysis shows that for all systems studied, regardless
of geometry, dimension, or band parameters, PF has a
nonmonotonic dependence on system size and its values are
below the bulk value for most of the size range studied.
Universal relations between PF and system size, which
apply to any single-carrier material of this type, are then
derived.

This paper is organized as follows: Sec. II gives a detailed
explanation of the approach taken to calculate the complete
subband structure of the nanowires and thin films and the
transport equations solved for each system. The dependence
of PF on band parameters and system size, as well as universal
PF curves, is presented in Sec. III. Section IV addresses
several model assumptions. Section V provides an outlook
for future research in the field of nanoscale thermoelectrics
based on the findings described here.

II. THEORY

The thermoelectric transport properties of a single-carrier
semiconductor are obtained by solving the Boltzmann trans-
port equation in the presence of an electric field and a
temperature gradient. For a given temperature T , the elec-
trical conductivity and Seebeck coefficient can be expressed
via11

σ = L(0)

S = −L(1)/(eT · L(0)), (1)
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where e is the charge of an electron and

L(α) = e2
∫

dk
4π3

(
− ∂f

∂E

)
τ (E(k))v(k)v(k)(E(k) − Ef )α.

(2)

In Eq. (2), k is the electron wavevector, f is the energy-
dependent Fermi-Dirac distribution, τ (E(k)) is the electron
relaxation time, v(k) is the electron group velocity, Ef is the
Fermi energy, and E(k) is the energy dispersion relation for
electrons. For all systems studied here, Eqs. (1) and (2) were
solved for an electron relaxation time constant with respect to
both energy and system size. The band gap of the material
is assumed large enough that a single majority carrier is
present—taken to be electrons in the conduction band without
loss of generality. We take the transport direction, indicated
as the x-direction in all systems studied, to be along the
nanowire or in the plane of the thin film. The general case
of an ellipsoid-of-revolution Fermi surface is developed in the
following discussion, while in Sec. III A. calculation results
are introduced for the case of a spherical Fermi surface. The
effective mass in the x-direction, the direction of transport,
is denoted m∗

||, while the effective masses in the y- and
z-directions, which are taken to be equal, are denoted m∗

⊥. To
study the effect of the band parameters on the relation between
PF and system size, calculations were done for effective
mass values of 0.01m0–0.06m0 (where m0 = 9.1 × 10−31 kg),
carrier mobility values of μ = 1 × 105 − 7 × 105cm2/V-s,
and relaxation times of τ = 5 × 10−13 − 2 × 10−12s. These
values are typical of single-crystal thermoelectric materials.

A. Transport equations in one dimension

1. Circular cross-section

Based on the effective mass theorem, the electron wave
function �(r) can be found by solving the following
Schrodinger equation11:

−h̄2

2
∇ · α · ∇�(r) + V (r)�(r) = E�(r), (3)

where α is the inverse effective mass tensor, V (r) is the
confining potential created by the nanowire boundary, and
E is the electron eigenenergy. For cylindrical nanowires, the
imposed boundary conditions are that �(r) vanishes at the
nanowire boundary and that it remains finite elsewhere. Due to
the rotational symmetry of the single Fermi pocket considered
here, Eq. (3) was solved analytically. However, numerical
models have been developed and can be utilized for more
complex band structures.12–14

Studying transport along the axis of the nanowire, taken to
be in the x-direction, the eigenenergies of Eq. (3) are of the
form

E(k) = Enm(kx) = h̄2k2
x

2m∗
||

+ Enm, (4)

where Enm is the quantized energy level resulting from
confinement in the y- and z-directions. The energy level Enm,
referred to as the “subband energy,” marks the bottom edge of
the subband dispersion relation. For a cylindrical nanowire
of radius r , these subband energies are given by Enm =

j 2
nmh̄2/2m∗

⊥r2, where jnm is the nth root of the mth-order
Bessel function of the first kind. The lowest 300 subband
energies were calculated for each r .

Thermoelectric transport properties for cylindrical
nanowires were calculated by solving the following one-
dimensional (1D) form of Eq. (2):

L(α) =
∑
nm

2
eμ

√
2m∗

||

π2r2h̄

∫ ∞

Enm

dE
√

E − Enm

·
(

− ∂f

∂E

)
· (E − Ef )α, (5)

where we have used the relations τ = μm∗
||/e and v(k) =

(1/h̄)(dE/dk). All preceding energies are given relative to the
conduction band edge of bulk. The sum over the contributions
of all subbands in Eq. (5) was truncated after 300 subbands—
a sufficient number to reach convergence of PF values.
Transport property calculations were performed using Eqs. (1)
and (5) for nanowire radii between 1 and 100 nm. For each r ,
PF was optimized with respect to the Fermi energy, and its
maximum value was used in the following analysis.

The distinction between the many-subband model pre-
sented here and the single-subband model developed by Hicks
and Dresselhaus is the summation in Eq. (5). Without this
summation, only the contribution of the lowest subband is
calculated. This single subband energy E11 increases as r

decreases; however, except for a global energy shift, the
DOS function remains unchanged [Fig. 1(a)]. Without the
summation, the value of the integral in Eq. (5) is independent
of r , depending only on the energy difference Ef −E11.
As a consequence, in the single-subband model, the Fermi
energy that maximizes PF is “pinned” to the subband energy,
regardless of the nanowire radius [Fig. 1(b)]. The optimal
Fermi energy therefore needs to be determined only once, for
an arbitrary value of r . The r−2 dependence of PF in the Hicks
and Dresselhaus model emerges from the energy-independent
form factor in L(α) and in σ . Physically, the r−2 dependence
corresponds to the cross-sectional scaling of the conductivity
of a quantum wire as the radius is varied, maintaining a single
operative conduction channel.

2. Square cross-section

For nanowires with a square cross-section, the eigenener-
gies of Eq. (3) were solved for with the boundary condition
that the electron wave function vanishes at the surface of the
nanowire. The resulting quantized energy levels corresponding
to quantum numbers n and m are of the form Enm =
h̄2π2(n2 + m2)/2m∗

⊥l2, where l is the wire width. As with
the cylindrical nanowires, the lowest 300 subbands were
considered for each l. For this square geometry, Eq. (2)
becomes

L(α) =
∑
nm

2
eμ

√
2m∗

||

πl2h̄

∫ ∞

Enm

dE
√

E − Enm

·
(

− ∂f

∂E

)
· (E − Ef )α. (6)
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FIG. 1. (Color online) (a) The 1D electronic DOS functions,
assuming the single-subband model, for cylindrical nanowires of
radii 10 and 15 nm. (b) The single-subband PF , normalized by
multiplying by r2, as a function of Fermi energy for these same two
nanowires. The energy �E is the same in both plots, indicating that
in the single-subband model, the Fermi energy that optimizes PF is
pinned to the subband energy.

Transport properties were calculated as a function of Fermi
energy for wire widths between 2 and 200 nm. PF values
were optimized with respect to the Fermi energy for each l.

Transport Eqs. (5) and (6) appear identical for cylindrical
and square nanowires of the same cross-sectional area;
however, the sets of subband energies Enm are different for the
two geometries. The number of subbands used was sufficient
to achieve convergence in the sums of Eqs. (5) and (6), as long
as m∗

⊥r2 did not exceed 130m0 nm2 and m∗
⊥l2 did not exceed

469m0 nm2.

B. Transport equations in two dimensions

For two-dimensional (2D) thin films, we took the z-axis
to be perpendicular to the film and the electric field and
temperature gradient in the x-direction. For this system, the
imposed boundary condition is a vanishing wave function �(r)

at the thin film surfaces. The eigenenergy solutions of Eq. (3)
are then given by

E(k) = En(kx,ky) = h̄2

2

(
k2
x

m∗
||

+ k2
y

m∗
⊥

)
+ En, (7)

where En is the “subband energy,” the quantized energy level
resulting from confinement, marking the bottom edge of the
subband dispersion relation. The nth subband energy is given
by the equation En = h̄2π2n2/2m∗

⊥a2, where a is the film
thickness. Subband energies were calculated for n = 1–300.

The thermoelectric transport properties were calculated for
thin films as a function of Fermi energy for film thicknesses
between 2 nm and 1 μm by solving the 2D form of Eq. (2):

L(α) =
∑

n

eμm∗
||

πh̄2a

∫ ∞

En

dE (E − En) ·
(

− ∂f

∂E

)
· (E−Ef )α,

(8)

where the sum is taken over all subbands. PF values were
then optimized with respect to the Fermi energy for each a.
Summing over 300 subbands, Eq. (8) converged as long as
m∗

⊥a2 did not exceed 13 000m0 nm2.

C. Transport equations in three dimensions

Transport property calculations were also carried out for
three-dimensional (3D) systems to determine the effect of
changing the single-band parameters on transport behavior.
In three dimensions, Eq. (2) can be written as8

L(α) = eμ(2m∗
||)

3/2

3π2h̄3

∫ ∞

0
dE (E)3/2 ·

(
− ∂f

∂E

)
· (E − Ef )α,

(9)

where the parabolic dispersion relation is now given by E(k) =
h̄2

2 ( k2
x

m∗
||

+ k2
y+k2

z

m∗
⊥

). For each set of materials parameters, PF was

optimized with respect to the Fermi energy.

III. RESULTS AND DISCUSSION

A. Transport properties

1. Effect of band parameters

The thermoelectric power factor, calculated as a function
of radius r for cylindrical nanowires assuming an isotropic
effective mass m∗ (m∗

||/m∗
⊥ = 1), is shown in Fig. 2. The solid

(blue) lines in Fig. 2(a) and 2(b) were calculated assuming
the effective mass and mobility values of InSb. As we have
previously reported,10 this curve exhibits different behavior in
two distinct size ranges: (1) for radii � 19 nm, confinement
of the electrons is strong and PF increases with decreasing
r , and (2) for radii > 19 nm, confinement is weak and
the subbands become close in energy (nearly degenerate),
resulting in an increase in PF with increasing r . Figure 2
also includes PF versus r curves for other values of the
band parameters. Figure 2(a) shows the effect of changing
the effective mass while maintaining a constant mobility. Two
overall trends can be seen as the effective mass is varied.
First, PF increases with increasing effective mass for each r .
Second, the minimum in PF (which is seen in each of the
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FIG. 2. (Color online) Power factor as a function of radius for
cylindrical nanowires. The effective mass is varied between 0.013m0

and 0.052m0 while (a) the mobility value is fixed to 70 000 cm2/V-s or
(b) the relaxation time is fixed to 5×10−13 s.

three curves) becomes narrower and shifts to lower nanowire
radii as the effective mass increases, indicative of decreasing
confinement. Figure 2(b) shows the effect of changing the
effective mass while maintaining a constant relaxation time.
Despite this difference, the minima in the PF curves again
become narrower and fall lower in r as the effective mass is
increased, similar to the trend seen in Fig. 2(a). Furthermore,
when comparing systems with the same effective mass (e.g.,
the short-dashed red curves in Fig. 2(a) and 2(b)), we find
that PF increases linearly with electron mobility. The plots in
Fig. 2 indicate that the minimum in PF , corresponding to the
divide between regions of strong confinement (small r) and
regions of weak confinement (large r), is a feature universal to
all circular nanowires in single-carrier systems regardless of
the particular materials parameters (carrier effective mass and
mobility).

2. Effect of system shape and dimensionality

Transport property calculations were also done for
nanowires with a square cross-section as a function of the
wire width l. The optimal PF values for square nanowires
with various values of the electron effective mass but the
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FIG. 3. (Color online) Power factor as a function of wire width
for square nanowires. The effective mass is varied between 0.013m0

and 0.052m0 while (a) the mobility value is fixed to 70 000 cm2/V-s
or (b) the relaxation time is fixed to 5×10−13 s.

same mobility are compared as a function of l in Fig. 3(a).
Figure 3(b) compares PF calculated for various effective
mass values, keeping the electron relaxation time constant.
A minimum is seen for each system investigated, regardless
of the specific materials parameters. As the effective mass
is increased, the minimum becomes narrower and occurs for
smaller nanowires. These results indicate that these trends in
the thermoelectric transport phenomenon are not unique to
either a specific material or a specific nanowire geometry.

Analogous transport property calculations were done for
2D thin films as a function of film thickness a. The optimized
PF is shown as a function of a for model systems with
various electron effective mass values and the same mobility in
Fig. 4(a) and for systems with various effective masses and the
same relaxation time in Fig. 4(b). The nonmonotonic relation
between PF and a persists in all systems studied. For InSb,
the minimum PF value is seen for a film thickness of 27 nm,
confirming that smaller system sizes are required for strong
confinement in 2D films as compared with 1D nanowires (for
which the minimum is located at 2r = 38 nm or l = 34 nm).

For the nanostructures discussed here, we identified several
common trends in the relation between optimal PF and
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FIG. 4. (Color online) Power factor as a function of thickness for
thin films. The effective mass is varied between 0.013m0 and 0.052m0

while (a) the mobility value is fixed to 70 000 cm2/V-s or (b) the
relaxation time is fixed to 5×10−13 s. The insets show magnified
portions of the corresponding plots, which include the minima in PF

for each curve.

system size and how this relation is affected by changes to
the single-carrier parameters: (1) For all structures (cylindrical
nanowires, square nanowires, and thin films), increasing the
electron effective mass results in a narrower minimum, shifted
to a smaller system size. (2) For all structures and system
sizes, PF increases monotonically with electron mobility.
(3) For all materials and systems investigated, the dependence
of PF on system size can be split into two size ranges
based on the dominant physical behavior. For smaller systems,
confinement is strong and PF increases with decreasing size.
For larger systems, confinement is weaker and PF increases
with increasing size. A minimum in PF , which falls 22%–28%
below the bulk value, separates these two regions. As shown
later, this behavior is the result of the fundamental changes in
the DOS function within the scope of the constant relaxation
time approximation (CRTA).

The trends in the thermoelectric transport in all nanos-
tructures of isotropic single-carrier materials are similar and
can be explained by a generalized theoretical framework that
considers the influence of size on the DOS function and on the

number of subbands that contribute to transport. For structures
in which a single subband contributes to transport, the subband
essentially acts as a lone conduction channel for electrons
with a size-independent conductance. A decrease in the
system size therefore translates to an increase in the effective
conductivity of the system. For PF of cylindrical nanowires,
this corresponds to an r−2 dependence on radius. For thin films,
PF follows an a−1 dependence on film thickness. As the size
of the nanostructure increases, the subbands become closer
together in energy. There is a critical size at which additional
subbands become relevant, marked by the minimum in the
PF curves. In the many-subband size range, an increase in
the number of subbands leads to an increase in PF—despite

the corresponding increase in system size. Thus, when many
subbands contribute to transport, degeneracy as opposed to
confinement becomes the dominating effect.

While the qualitative behavior of all preceding systems is
similar, the exact sizes corresponding to the PF minimum,
as well as the size required for improvement in PF over
bulk, depend on the specific materials parameters used. In
the absence of a complete understanding of the relations
among thermoelectric power factor, system size, and materials
parameters, in-depth modeling of each material is required to
extract this practical information.

We proceed to introduce a universal model for PF as
a function of size. Given a single-carrier material with an
ellipsoid-of-revolution Fermi pocket, this universal model pro-
vides the full description of the size dependence of the optimal
PF of the system, requiring no further computational effort.

B. Universal scaling relations

The universal scaling relations are derived for each nanos-
tructure (cylindrical nanowires, square nanowires, and 2D
thin films) from the mass, mobility, and size dependences
of PF . For each structure, the expression for PF consists
of a product of two terms [see Eqs. (1), (5), (6), and (8)]:
an energy independent coefficient, and a quotient of integrals
that depends on the quantized energy levels and the Fermi
energy. While the preceding discussion focused on systems
with a spherical Fermi pocket, the universal scaling relations
presented here apply to systems in which the effective mass
perpendicular to the transport direction (m∗

⊥) is not necessarily
equal to that parallel to the transport direction (m∗

||).

1. Cylindrical nanowires

For cylindrical nanowires of cross-sectional area πr2, the
energy-independent coefficient is proportional to the product
μ
√

m∗
||

πr2 [in contrast, the bulk PF follows μ(m∗
||)

3/2]. The
subband energies are proportional to 1

m∗
⊥πr2 , meaning that

systems with equal m∗
⊥r2 will have identical energy levels

and thus the energy-dependent integral portion of PF will
be identical. Normalizing the nanowire PF with respect to
the bulk value and plotting this normalized PF as a function
of (m∗

⊥
m0

)r2 (as opposed to r) gives rise to the curve shown in
Fig. 5. This transformation causes all of the PF data calculated
and shown in Fig. 2 to merge into a single curve. This
curve is common to all cylindrical nanowires of single-carrier
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FIG. 5. (Color online) The universal curve for cylindrical
nanowires (NWs).

materials with a spherical Fermi surface, as well as those with
an ellipsoid-of-revolution Fermi surface. The universal curve
exhibits a minimum (26% below the bulk value) for ( m∗

⊥
m0

)r2 =
4.7 nm2. The normalized PF values approach 1 in the limit
of large (m∗

⊥
m0

)r2, and (m∗
⊥

m0
)r2 � 1.6 nm2 is required for an

improvement in PF over bulk.

2. Square nanowires

The energy-independent coefficient of PF is proportional

to
μ
√

m∗
||

l2 for square nanowires of cross-sectional area l2,
and the subband energy levels are proportional to 1

m∗
⊥l2 . The

universal curve for square nanowires is found by appropriate
scaling of the data: PF values are normalized with respect
to the bulk value and are plotted as a function of (m∗

⊥
m0

)l2 as
opposed to l (Fig. 6). This transformation causes all PF

data calculated and shown in Fig. 3 to merge into a single
curve. The minimum of this universal curve is located at
(m∗

⊥
m0

)l2 = 15.0 nm2, with a PF value 28% below the bulk
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FIG. 6. (Color online) The universal curve for square nanowires.
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FIG. 7. (Color online) Normalized power factor as a function of
the cross-sectional area for cylindrical and square nanowires (NWs).

value. To see an increase in PF over the bulk value, systems
must satisfy (m∗

⊥
m0

)l2 � 5.1 nm2.
Figure 7 compares PF , normalized relative to the bulk

value, as a function of the nanowire cross-sectional area for
cylindrical and square geometries. The electron effective mass
value of InSb is assumed. The overall trends are similar,
exhibiting minima near cross-sectional areas of ∼1100 nm2.
For areas < 1100 nm2, a single subband contributes to transport
and PF values for the two geometries are identical. For larger
systems in which additional subbands contribute, PF values
of cylindrical nanowires differ from those of square nanowires
because the subband energy separations for the two geometries
are different.

3. Thin films

In 2D systems, the energy-independent coefficient of PF

depends on carrier mass, mobility, and film thickness via the
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FIG. 8. (Color online) The universal curve for thin films. The inset
shows a magnified portion of the plot, including the PF minimum.
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factor
μm∗

||
a

. The subband energies are proportional to 1
m∗

⊥a2 .
Scaling PF values relative to the bulk value and plotting
them as a function of ( m∗

⊥
m0

)a2 gives rise to the universal
curve in Fig. 8. With the preceding transformation, all data
shown in Fig. 4 merge into a single curve. The minimum here
occurs at (m∗

⊥
m0

)a2 = 9.1 nm2 (falling just 22% below the bulk

value), while improvement in PF over bulk requires (m∗
⊥

m0
)a2 �

4.7 nm2. These values are small relative to those found in
nanowires due to the reduced degree of confinement in 2D
systems.

IV. ADDITIONAL MODEL CONSIDERATIONS

The Hicks and Dresselhaus models helped jump-start the
field of nanothermoelectrics. These models are still relevant
almost two decades later but are often wrongly applied
to materials systems beyond their intended scope without
significant scrutiny. To avoid future misinterpretations of our
model, this section discusses in detail its scope and limitations.

The model developed here, leading to the nonmonotonic
dependence of PF on system size, is applicable to any
semiconductor whose carriers can be characterized by a single
effective mass tensor and a single mobility tensor. These
tensors are assumed to be size independent, indicating that
the dominant scattering mechanism and the locations of the
carrier pockets in the Brillouin zone should be the same for
the bulk and the low-dimensional structures. This model can
be applied to materials with degenerate valleys. Utilization of
the universal curves in Figs. 5, 6, and 8 should be restricted to
dispersion relations that lead to ellipsoid-of-revolution Fermi
surfaces. All calculations were done at room temperature (T =
300 K). Deviations due to extreme low and high temperatures
have not been fully investigated at this point.

The model uses the CRTA. An average τ (deduced from
transport data) is assigned to all electron states independent
of electron energy and system size. When considering the
scattering mechanisms in various materials systems and
heterogeneous device structures, a complex pattern of size
dependence emerges. Varying the system size affects the
mobility through (1) the change in the dispersion relation of
the electronic subbands; (2) the change in the optimal Ef ,
and therefore in the carrier concentration, which maximizes
the thermoelectric properties; (3) phonon confinement and
resulting changes in the phonon dispersion relation; and
(4) interface effects, including surface roughness, charge
accumulation at interfaces and buried in adjacent materials,
and boundary conditions imposed on the electrons and the
phonons in the system. Examples of calculations of PF

for narrow-width semiconductor nanowires (including InSb)
considering the material-specific scattering in detail can be
found in Refs. 15–17. Typically, the scattering rates gradually
approach their bulk values as the system size increases, and
large deviations from the bulk are only observed below a
characteristic size associated with the scattering mechanism.
The CRTA can be justified as long as the system size is
larger than this critical size. Theoretical and experimental
work suggests that in many instances the critical size is
found to be <20 nm. Considering scattering of electrons by

acoustic phonons and polar optical phonons, carrier mobility
calculated for GaAs thin films is not affected by film thickness
down to ∼10 nm.15,18 Theoretical investigations of low-field
carrier mobility in silicon-on-insulator inversion layers19 and
nanowire transistors20 have included additional scattering
mechanisms (surface roughness and coulomb scattering).
Carrier mobility limited by these mechanisms was again shown
to be strongly size dependent only for systems smaller than
∼10 nm; for larger structures, the mobility varies slightly and
deviates from the value calculated for an inversion layer in
micron-sized transistors by a maximum of 20%. The effect
of phonon confinement on carrier mobility has also been
investigated in Si nanowires21 and silicon-on-insulator thin
films,22 and it is predicted to be most significant in systems
with critical dimensions on the order of the thermal phonon
wavelength (<10 nm for room temperature Si). Experimental
work on lightly doped silicon-on-insulator films has verified
that the mobility stays within 20% of the bulk value for films
as small as 9.4 nm,23 and studies of the electron conductivity
in metallic thin films have similarly shown that very small
film thicknesses are required for a significant deviation
from the bulk value.24–26 These examples are remarkable
in the sense that they provide qualitatively the same trend
in the size dependence for mobilities that vary over orders
of magnitude and are dominated by a variety of physical
processes. Experimental values of the mobility in nanowire
systems are scarcer and often limited by boundary roughness
scattering. However, bulklike mobilities have been reported
in <20-nm-diameter p-type Si nanowires27 and n-type GaN
nanowires.28

To date, theoretical and experimental work indicates that
the electron mobility is approximately size independent,
approaching the bulk value, for systems > 20 nm. In this
size range, which includes the majority of structures discussed
here, a detailed investigation of the various relevant scattering
mechanisms is expected to yield at most a 20% variation in the
magnitude of PF . The modifications are expected to increase
as the system size decreases and the approximation of a
constant relaxation time becomes invalid. The most important
trend derived using our model—the reduction of PF value in
nanostructures vs bulk—is found in the intermediate size
range and consequently is expected to be consistent with
more detailed models considering various material-specific
scattering mechanisms. For systems below the critical size of
20 nm, however, the CRTA adopted in this work is not reliable.
The trends observed for these highly confined systems should
be revisited through the investigation of specific materials and
their size-dependent scattering rates. For example, the power
factor may never exceed the bulk value due to size-dependent
scattering in small nanostructures.29 Such material-specific
considerations were avoided in an effort to maintain the
generality of our results and prevent the underlying physics
from being lost in the details, but they should be kept in
mind. In addition, while the experimental results cited earlier
indicate a weak dependence of carrier mobility on sizes
>20 nm, they give no indication of the evolution of the
energy-dependent μ(E) as the system size is varied.22 A
better understanding of this relation is crucial for improved
accuracy in transport property calculations. These complica-
tions notwithstanding, the low-dimensional multiple-subband
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systems have a DOS profile that is undesirable for a thermo-
electric material.

The reduced DOS in nanostructures and its detrimental
effect on the thermoelectric PF have not been discussed
in the literature, though several mechanisms leading to a
comparable decrease in PF in nanowires and thin films have
been identified in the past. A related mechanism is the lifting of
carrier pocket degeneracy due to quantization—however, this
is a material-specific phenomenon that imposes conditions on
the band structure of the material and the crystallographic
orientation of the nanowire.30 A decrease in carrier mobility,
due to increased polar optical phonon scattering rates in small
structures, can also lead to an unfavorable decrease in thermo-
electric properties.15,31 As mentioned earlier, this mechanism
is most effective for remarkably small structures (<20 nm),
where single-subband conditions apply. Finally, size reduction
may result in loss of confinement of the electronic states:
in superlattice thin film and nanowire structures with finite
confinement potentials, reduction in size can lead to a reduced
PF due to increased carrier tunneling when the barriers
become very narrow.15,31 While these examples are relevant to
the design of thermoelectric nanostructures, the phenomenon
reported here is of greater significance. The nonmonotonic
behavior shown here is not material specific and is predicted
for any individual carrier pocket. The effect is pronounced
in weakly confined electronic systems, corresponding to the
size range of most experimental nanowire systems that can be
reproducibly fabricated today.

Generally, the optimization of PF is a step toward the goal
of maximizing ZT . We emphasize that the functions PF (r)
and ZT (r) (or PF (a) and ZT (a), etc.) do not necessarily
follow the same trends, since the lattice contribution to thermal
conductivity often has a strong size dependence. Thus, when
size reduction significantly decreases the thermal conductivity,
a monotonic increase in ZT with confinement is possible, as
has been observed experimentally.

For all nanostructures and bulk systems investigated here,
the Fermi energy (i.e., doping level) has been chosen such that
PF is maximized for each system size. The Fermi energy of
consideration (or optimal doping) is different depending on
whether PF or ZT is maximized. The universal curves can
be derived only when PF values are optimized. Optimizing
ZT requires inclusion of the size dependence of the lattice
thermal conductivity of a particular material. Nevertheless,
the universal curves shown here can be considered the best-
case scenario for PF variation with size: for any given r , the
percent reduction in PF values below the bulk value is even
greater when the Fermi energy is adjusted to optimize ZT .
The adjustment in the Fermi energy is directly related to the
ratio of the electron and the lattice contributions to thermal
conductivity. When κl � κe, the Fermi energy dependence of
ZT is similar to that of PF , and the Ef adjustment is small.
As κl is largest in bulk structures, the Fermi energy adjustment
is smaller in 3D than in 1D or 2D systems. The difference
between optimal PF and PF evaluated at the Fermi energy
that optimizes ZT increases with the magnitude of the Ef

adjustment. Consistent with this, we calculated for cylindrical
InSb nanowires a 26% decrease in PF relative to bulk when
Ef is selected to maximize PF (Fig. 2) and a 38% decrease
in PF versus bulk when selecting Ef to maximize ZT .10 The

radius corresponding to the minimum in PF for cylindrical
InSb nanowires varies slightly, from 19 nm (when optimizing
with respect to PF ) to 17 nm (when optimizing with respect
to ZT ).

V. IMPLICATIONS ON FUTURE RESEARCH

The universal curves developed here present a set of guide-
lines for future research, both theoretical and experimental. We
have shown that improvements in the thermoelectric power
factor are difficult to come by in single-carrier materials.
Further work should focus on possible ways to utilize nanos-
tructures to compensate for the anticipated decrease in PF .
Several approaches for achieving this can be derived from the
model:

(1) Engineering the band structure through quantum con-
finement, such that the carriers shift to a valley with optimal
transport properties or two or more bands become degen-
erate. Alignment of additional carrier pockets translates to
summation over additional sets of subband energies in Eqs.
(5), (6), and (8), which could mean a substantial increase
in PF for every additional band. Such “carrier pocket
engineering” has been demonstrated theoretically in p-type
Bi1-xSbx nanowires32 and GaAs/AlAs superlattice structures33

and experimentally in Si/Ge superlattice structures.34

(2) Decreasing the lattice thermal conductivity in nanostruc-
tures, with emphasis on a size range in which suppression of
phonon heat transport more than compensates for the decrease
in PF . This concept was realized in Si nanowires (∼50 nm in
diameter) with roughened surfaces. The 99% decrease in total
thermal conductivity more than makes up for an 18% decrease
in the measured PF .2

(3) Altering the dominant electron scattering mechanism
via nanoscale engineering of the material. A particularly
successful example of this is in nanostructured bulk materials,
in which either nanoinclusions are imbedded in a bulk matrix
or nanoparticles are hot pressed to form bulk materials.35–37

In both cases, the resulting grain boundaries act as low-energy
electron scattering centers. Such a modification in the energy
dependence of τ (E) can increase the Seebeck coefficient
by increasing the asymmetry about the Fermi energy in
the integrand of L(1) in Eq. (2). Utilizing this technique,
improvements in PF values over bulk have been demon-
strated in In0.53Ga0.47As with random ErAs nanoinclusions,38

nanostructured BixSb2-xTe3,39,40 and hot-pressed SiGe
alloys.41

The results of this model are in line with the conclusion
reached by Mahan and Sofo: the DOS of the ideal thermoelec-
tric material consists of a δ-function, for which the electron
energy distribution is narrowest, near the Fermi energy.42 We
have identified a minimum in the relation between PF and
system size, from which point PF increases as the system is
made smaller or bigger. In the first case, the subbands move
farther apart, and in this single-subband regime, the spread of
the electron energy distribution is minimized. In the second
case, the subbands move closer together, which also leads to
a reduction in the variance of the energy of the electrons now
populating many subbands. While the Mahan-Sofo concept
was formulated for the optimization of ZT , the reduction of
the PF value of many-subband nanoscale systems relative
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to bulk can be qualitatively understood on the basis of this
concept.

In summary, we have presented room temperature PF

calculations as a function of system size for cylindrical and
square nanowires and thin films for a hypothetical isotropic
single-carrier semiconductor. Regardless of the specific band
parameters, system geometry, and dimensionality assumed,
PF exhibits the same qualitative behavior as a function
of system size. For small systems (smaller than the size
corresponding to the minimum PF ), the conduction band
effectively consists of a single subband, and PF increases
as the size decreases until the CRTA breaks down. For
larger systems, on the other hand, the number of contributing
subbands increases with system size, leading to an increase in
PF .

We developed universal curves of the optimized PF as
a function of system size for nanostructures (cylindrical
nanowires, square nanowires, and thin films) that apply to

any single-carrier isotropic semiconductor regardless of its
specific band parameters. These universal scaling relations
are important in understanding the thermoelectric behavior of
nanostructured materials: given just two material parameters
(carrier effective mass and mobility), the universal curves
can be scaled to provide PF for any system size with
minimal computational effort. In particular, the system size
corresponding to the minimum PF value and the largest
system size for which an improvement in PF is seen over bulk
are easily determined. Universal PF curves can be constructed
for other structures (e.g. of lower symmetry) following the
approach described here.
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