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Calculation and measurement of radiation corrections for plasmon resonances in nanoparticles
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The problem of plasmon resonances in metallic nanoparticles can be formulated as an eigenvalue problem
under the condition that the wavelengths of the incident radiation are much larger than the particle dimensions.
As the nanoparticle size increases, the quasistatic condition is no longer valid. For this reason, the accuracy of
the electrostatic approximation may be compromised and appropriate radiation corrections for the calculation
of resonance permittivities and resonance wavelengths are needed. In this paper, we present the radiation
corrections in the framework of the eigenvalue method for plasmon mode analysis and demonstrate that
the computational results accurately match analytical solutions (for nanospheres) and experimental data (for
nanorings and nanocubes). We also demonstrate that the optical spectra of silver nanocube suspensions can be
fully assigned to dipole-type resonance modes when radiation corrections are introduced. Finally, our method
is used to predict the resonance wavelengths for face-to-face silver nanocube dimers on glass substrates. These
results may be useful for the indirect measurements of the gaps in the dimers from extinction cross-section
observations.
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I. INTRODUCTION

Plasmon resonances in metallic nanoparticles occur under
two conditions: (1) the wavelengths of the incident radiation
are appreciably larger than the geometric dimensions of
the metallic nanoparticles and (2) the dielectric permittivity
of nanoparticles is negative at these wavelengths. The first
condition suggests that plasmon resonances are, by and large,
electrostatic in nature, while the second condition implies
that the uniqueness of electrostatic solutions may be broken
and nonzero source-free solutions of electrostatics may exist.
These source-free solutions are plasmon modes and they occur
for special negative values of the nanoparticle permittivity (i.e.,
resonance permittivities). Integral techniques1–6 have been
suggested for the analysis of plasmon resonances. In particular,
the problem of computing the negative resonance values of
the permittivity has been framed as an eigenvalue problem
for specific boundary integral equations.3–6 This eigenvalue
approach reveals that within the electrostatic approximation
the resonance values of the nanoparticle permittivity (and,
consequently, the resonance wavelengths) depend only on the
shape of the nanoparticles but not their dimensions.

When the incident wavelengths are much larger than
the nanoparticle dimensions, time harmonic electromagnetic
fields within the nanoparticles and around them vary with
almost the same phase. As a result, at any instant of time
these fields resemble electrostatic fields. As the dimensions

of nanoparticle are increased, the quasistatic condition is
not strictly valid, and retardation (wave) effects manifest
themselves.7–10 In this situation, the accuracy of the electro-
static approximation may be compromised and appropriate
radiation corrections for the calculation of resonance per-
mittivities are needed. By using the perturbation technique,
such radiation corrections have been derived.6 In this paper,
these radiation corrections are tested through their comparison
with experimental data. This comparison reveals that these
radiation corrections may be quite accurate. This suggests
that the radiation corrections can be used to gauge the size
of plasmonic nanoparticles based on spectroscopy data, for
example, during the optimization of a synthetic protocol.
Furthermore, these radiation corrections may be valuable in the
analysis of plasmon resonances in nanoparticle clusters which
are typically employed in various applications, for instance, in
surface enhanced Raman spectroscopy (SERS).11–20 For this
reason, the computational results for radiation corrections are
presented here for face-to-face nanocube dimers for various
“gap-to-cube edge length” ratios. These computational data
may be useful for the deduction of gap distances between
nanoparticles from extinction cross-section measurements.

In the paper, an extensive study of radiation corrections
for cubic nanoparticles and their comparison with measured
extinction spectra of nanocube ensembles is presented. This
study is of physical significance for the following reasons.
First, the use of cubic nanoparticles is very promising for SERS
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research because high electric fields can be achieved near
corners and edges of nanocubes. Second, the dipole plasmon
spectrum of nanocubes is quite rich. Namely, nanocubes
(unlike nanospheres) have many dipole modes with different
resonance wavelengths. At small nanocube dimensions, these
wavelengths are bunched together and the linewidth of the
extinction peak of the first (highest resonance wavelength)
dipole mode conceals the extinction peaks due to other dipole
modes. As the dimensions of the nanocubes are gradually
increased, the resonance wavelengths of the dipole modes
become more separated and the extinction peaks of other
dipole modes are gradually revealed. It is demonstrated in
the paper that the radiation corrections accurately describe
this physical phenomenon and predict that the second dipole
mode becomes dominant in the extinction spectra of nanocube
ensembles as nanocube dimensions are increased. The ra-
diation corrections also reveal the sensitivity of different
dipole modes to the rounding of corners and edges and to
the variation of the dimensions of the nanocubes. Associated
with these sensitivities is the inhomogeneous broadening of
the extinction spectra, which may be critical in the design of
reliable plasmonic structures for electric-field enhancement.
Finally, all physical features of the extinction spectra have
been explained by using dipole modes and radiation effects,
i.e., without invoking higher order multipole “dark” modes.

II. THEORETICAL METHOD

A. Plasmon resonances as an eigenvalue problem

To start this discussion, we first describe how plasmon
resonances can be mathematically treated as an eigenvalue
problem for specific boundary integral equations. Consider
a metallic nanoparticle of arbitrary shape (see Fig. 1). The
resonance values of the dielectric permittivity ε

(0)
k can be

computed in the electrostatic approximation by solving the
eigenvalue problem for the following integral equation:3–6

σ
(0)
k (Q) = λk

2π

∮
S

σ
(0)
k (M)

�rMQ · �nQ

r3
MQ

dSM. (1)

FIG. 1. The metallic nanoparticle bounded by surface S.

The eigenvalues λk are related to the resonance permittivities
by

λk = ε
(0)
k − ε0

ε
(0)
k + ε0

, (2)

where ε0 is the dielectric constant of free space. The eigen-
functions σ

(0)
k (M) correspond to surface electric charge density

distribution functions over surface S, M and Q are points on
surface S, �rMQ is the vector from M to Q, and �nQ is the
outward-pointing unit normal to S at Q. The superscript “(0)”
indicates that ε

(0)
k and σ

(0)
k are computed in the electrostatic

approximation. When the metallic nanoparticle is embedded in
a homogeneous medium of dielectric constant ε = εrε0 (e.g.,
water), ε0 is replaced by ε.

By solving the eigenvalue problem (1), the resonance
permittivities for various plasmon modes can be found from
formula (2). In order to determine the plasmon resonance
frequencies, the dispersion relation of the metal ε(ω) =
ε′(ω) + iε′′(ω) is employed. In the electrostatic limit, radiation
losses and “ohmic” losses [due to the imaginary part ε′′(ω)
of the dielectric permittivity] are neglected. The resonance
frequencies ω

(0)
k are identified by the condition

ε′(ω(0)
k

) = ε
(0)
k . (3)

There exists a complementary approach5,6 to the calculation
of ε

(0)
k . In this approach, a double layer of electric charges

(dipoles) of density τ
(0)
k (M) on S is used instead of the single

layer charge density σ
(0)
k (M). This leads to the eigenvalue

problem for the following integral equation adjoint to (1):

τ
(0)
k (Q) = λk

2π

∮
S

τ
(0)
k (M)

�rQM · �nM

r3
MQ

dSM, (4)

and the same formulas (2) and (3) can be used to compute the
resonance permittivities ε

(0)
k and resonance frequencies ω

(0)
k ,

respectively.
We point out that the structure of integral equations (1)

and (4) implies that the eigenvalues λk , and, consequently,
the resonance permittivities ε

(0)
k depend on the shape of

nanoparticles but not on their dimensions.6 It is also apparent
that the computed values of ε

(0)
k do not depend on nanoparticle

material and can be used in formula (3) for any form of the
dispersion relation of the metal to determine the corresponding
resonance frequencies. In this way, the properties of plasmon
resonances which depend on nanoparticle shape are fully
separated from the properties which depend on nanoparticle
material.

In the described eigenvalue approach to the calculation
of plasmon modes and their resonance wavelengths the
imaginary part ε′′(ω) of dielectric permittivity is neglected.
This imaginary part of permittivity is fully accounted for
in the analysis of excitation of plasmon modes by incident
optical radiation, which has been carried out in Ref. 21. It
is demonstrated there that ε′′(ω) determines the lifetime of
plasmon modes as well as the strength of plasmon resonance
fields in the case of resonance and off-resonance excitations. In
particular, the analytical formulas derived in Ref. 21 show that
the efficiency of plasmon resonance excitation is controlled by
the ratio ε′(ω)/ε′′(ω).
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The plasmon resonance analysis based on formulas (1)–(4)
presumes the validity of the electrostatic approximation and
local in space constitutive relations. It is apparent that this
approach is limited from “below” and “above.” In other
words, this approach is valid for intermediate dimensions
of nanoparticles. It is of interest, of course, to evaluate the
limit of applicability of this approach from “below” by using
the quantum-mechanical treatment of plasmon resonances.
Such treatment has been undertaken in Ref. 22 for nanowires
with elliptical cross sections and compared with analytical
results from Ref. 5 based on the electrostatic approach. It
is demonstrated in Ref. 22 that the electrostatic approach
is quite accurate provided that cross-sectional dimensions
exceed 8 nm. Another (empirical) way to evaluate the validity
of electrostatic approach from “below” is to compare the
numerical and analytical results of the electrostatic analysis
with experimental data. It has been shown in Ref. 23 that
for spherical gold nanoparticles with dimensions above 5 nm
plasmon resonances occur at the wavelength of about 520 nm
consistent with the electrostatic approach. To evaluate the
validity of electrostatic approach from “above,” the radiation
corrections can be used. This approach and its experimental
testing are discussed in the paper.

B. Radiation corrections

Next, we shall discuss radiation corrections to the electro-
static approximation defined by formulas (1)–(4). These radia-
tion corrections can be mathematically treated as perturbations
with respect to a small parameter β which is defined as the ratio
of the particle dimension to the free-space wavelengths:

β = ω
√

μ0ε0d, (5)

where d is the nanoparticle diameter, i.e., the maximum
distance between any two points M and Q on S. According to
perturbation theory, the resonance permittivities are expressed
as a series in β,

εk = ε
(0)
k + βε

(1)
k + β2ε

(2)
k + · · · . (6)

It has been shown that for any shape of nanoparticle the first-
order radiation correction ε

(1)
k is equal to zero,6

ε
(1)
k = 0. (7)

For the second-order radiation correction ε
(2)
k the following

formula has been derived:6

ε
(2)
k =

(
ε0 − ε

(0)
k

) ∮
S
τ

(0)
k (Q)�nQ · �ak(Q)dSQ∮

S
τ

(0)
k (Q)�nQ · �E(0)

k (Q)dSQ

, (8)

where �E(0)
k (Q) and �ak(Q) are defined as

�E(0)
k (Q) = 1

4πε0

∮
S

σ
(0)
k (M)

�rMQ

r3
MQ

dSM, (9)

�ak(Q) = ε0 − ε
(0)
k

8πε0

∮
S

[�nM × �E(0)
k (M)

] × �rMQ

rMQ

dSM. (10)

Thus, in order to compute the second-order radiation
corrections ε

(2)
k for resonance values of the nanoparticle

permittivity, first boundary integral equations (1) and (4) are
solved to find ε

(0)
k , σ

(0)
k (Q), and τ

(0)
k (Q). Using σ

(0)
k (Q) and

formulas (9) and (10), �E(0)
k (Q) and �ak(Q) are computed.

Finally, using formula (8), ε
(2)
k is calculated. After ε

(2)
k is

found, the resonance values of the nanoparticle permittivity
are computed as follows:

εk = ε
(0)
k + β2ε

(2)
k . (11)

The resonance frequencies of the plasmon modes can be
computed from the equation

ε′(ωk) − β2(ωk)ε(2)
k = ε

(0)
k . (12)

C. Computational details

The computational method described above has been
software implemented. The boundary integral equations (1)
and (4) are discretized by partitioning the surface of the particle
into triangular or square patches and are solved by using
ARPACK eigenvalue solvers implemented in MATLAB. After
solving the eigenvalue problem, the dipole plasmon modes
are identified through computing the dipole moments of the
eigenmodes by using the formula

�p(0)
k =

∮
S

�rQσ
(0)
k (Q)dSQ. (13)

It is important to mention that, to calculate the dipole moment
strength of each plasmon mode, σ

(0)
k and τ

(0)
k have to be

properly normalized.6 Subsequently, formulas (8)–(10) are
discretized and computed for each dipole mode and by using
(12) the resonance frequencies of the plasmon modes are
determined. In this work, the numerical calculations have been
performed with 5120 and 12,288 triangular surface patches per
single sphere particle and single ring particle, respectively, and
with 38,400 square surface patches per single cube particle.
The dielectric constants of water and glass have been set to
1.77ε0 and 2.25ε0, respectively.

III. EXPERIMENTAL DETAILS

Silver nanocubes were synthesized by the polyol reduction
method.24–26 15 mg CuCl2 were dissolved in 2.5 mL 1,5-
pentanediol (PDOH) and the solution was aged for 10 days.
100 mg AgNO3 were dissolved in 5 mL PDOH and 20 μL
of the aged CuCl2 solution were added. This mixture was
sonicated for 90 min to yield a light orange solution (Ag solu-
tion). Separately, 200 mg polyvinylpyrrolidone 55K (Sigma-
Aldrich) were dissolved in 10 mL PDOH (PVP solution). In a
round-bottom flask, 5 mL of PDOH were heated in an oil bath
set to 190 ◦C. The Ag solution was injected in 125 μL aliquots
at regular intervals. The PVP solution was added dropwise
between injections at a rate of ∼160 μL min−1. The size of
the nanocubes was controlled by adjusting the number of Ag
solution injections and the time intervals between injections.
Electron micrographs were taken using a Hitachi SU-70
FE-SEM. UV-vis-NIR spectra were recorded by diluting the
reaction product in deionized water, using a Hitachi U-2910
spectrometer. Absorption maxima were determined by fitting
each spectrum to a sum of two to six Lorentzian peak functions
using Origin8.
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IV. RESULTS AND DISCUSSION

A. Comparison with Mie theory and experimental data

Section II succinctly details a computational method for
determination of plasmon resonance frequencies of nanopar-
ticles given their shape and dispersion relation ε(ω). In
this section, we first discuss the accuracy of this method
in modeling a number of particle shapes with increasing
complexity. First, it is important to mention that the presented
computational methodology is consistent with the analytical
results for spherical nanoparticles that follow from the Mie
theory. According to the Mie theory, the resonance permittivity
for the first three (spatially uniform) dipole plasmon modes is
given by the formula27

ε1 = −(
2 + 3

5β2
)
ε0 = −(

2 + 3
5ω2μ0ε0d

2
)
ε0, (14)

where d is the diameter of the spherical nanoparticle.
It can be shown analytically that in the case of spherical

nanoparticles formula (14) can be derived from Eqs. (1)–(11).
This somewhat lengthy derivation is omitted here and, instead,
the comparison between computations performed by using
Eq. (14) on the one hand and Eqs. (8)–(12) on the other
hand is presented graphically in Figs. 2 and 3 for spherical
nanoparticles in water. It is evident from Fig. 2 that the
resonance permittivity decreases quadratically as the diameter
increases. Due to the dispersion relation of gold and silver, a
decrease in the resonance permittivity results in a redshift in
the resonance wavelength of these metallic nanoparticles as
their diameter increases. The calculation results of Fig. 3 also
match values of plasmon resonance wavelengths for spherical
nanoparticles of different diameters calculated in Ref. 7 as well
as experimental results from Ref. 28.

To further illustrate the accuracy of radiation corrections
given by formulas (8)–(12) for different shapes of nanopar-
ticles, Tables I–III present the results of computations of
second-order radiation corrections for resonance wavelengths
of dipole plasmon modes of gold nanorings placed on glass
substrates, silver nanocubes immersed in water and silver

FIG. 2. (Color online) Comparison between the calculation of the
resonance permittivity of the dipole plasmon modes using second-
order radiation corrections (open circles) and the Mie theory (solid
line) for spherical nanoparticles in water as a function of nanosphere
dimension.

FIG. 3. (Color online) Comparison of the calculated dipole
plasmon resonance wavelength of spherical nanoparticles in water
computed by using second-order radiation corrections (open circles)
and the Mie theory (solid line). Data presented for (a) silver and
(b) gold dispersion relations.

nanocubes placed on glass substrates, respectively.29 The
corresponding inner radii for ring 1, ring 2 and ring 3 in
Table I are 46, 50, and 51 nm, whereas the heights and outer
radii are 40 and 60 nm, respectively for all rings. The edge
length of the nanocubes in Tables II and III is 36 nm. It is
evident from the presented data that the second-order radiation
corrections result in a better agreement with experimental data
than the results based on purely electrostatic analysis. The
largest discrepancy between the calculated and experimental
data is observed in the case of the thinnest ring (ring 3). The
plausible explanation for this discrepancy can be related to
the technical challenges associated with writing sub-10-nm
features by electron-beam lithography and characterizing their
dimensions by scanning electron microscopy (SEM). This
point of view is consistent with the observation that a difference
in thickness of 1 nm between ring 2 and ring 3 results in almost
the same redshift in the resonance wavelength as in the case of
ring 1 and ring 2 that differ in thickness by 4 nm. Additionally,
the large linewidth of the extinction peak for ring 3 (see Ref. 30)
suggests that there are significant dimension variations among
the nanostructures within the ring 3 ensemble.

B. Radiation corrections for dipole plasmon
modes in silver nanocubes

A more detailed examination of the radiation correction
theory has been performed by comparing calculated results
with experimental data collected from ensembles of silver

TABLE I. Calculated and measured resonance wavelengths of
gold nanorings placed on a glass substrate.

Resonance wavelength Ring 1 Ring 2 Ring 3
(nm) (thickest) (thinnest)

Electrostatic calculations 940 1102 1159
Second-order corrections 987 1156 1214
Experimental data (Ref. 30) 1000 1180 1350
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TABLE II. Calculated and measured resonance wavelengths of
silver nanocubes immersed in water.

Resonance wavelength High-frequency Low-frequency
(nm) mode mode

Electrostatic calculations 405 454
Second-order corrections 420 478
Experimental data (Ref. 31) 432 500

nanocubes in aqueous suspensions (see details in Sec. III).
Until recently,32,33 fine control of the size of the resulting
silver nanocubes has been a challenging task. In our synthesis
protocol, control over the mean size of the nanocubes was
achieved by adjusting the timing of the additions of the silver
ions and the polymeric surfactant to the reaction mixture. We
have successfully prepared monodispersed suspensions of sil-
ver nanocubes 50–150 nm in edge length. Larger mean sizes of
silver cubes could be achieved, yet the size distribution is thus
far unsatisfactory for those preparations. The monodispersed
silver nanocubes were characterized by scanning electron
microscopy (SEM) and by UV-vis-NIR absorption in aqueous
suspensions (Fig. 4). SEM images of the silver nanoparticles
indicate that the vast majority of the particles in the as-made
suspension have a cubic shape and a common size [Fig. 4(a)].
The optical absorption spectrum of the nanocubes in water
displays a number of absorption maxima in the wavelength
range 300–900 nm. As shown in Fig. 4(b), the location of
these absorption maxima is size dependent. An increase in the
size, and thus in the contribution of retardation effects, leads
to a redshift in the absorption maxima.34 In particular, the
absorption band with the longest wavelength shifts from ∼450
to ∼750 nm as the mean size of the cubes increases from 50
to 150 nm. This absorption peak becomes broad and relatively
less intense as the cube size increases. The interpretation of the
spectra of plasmonic nanocubes has not been consistent across
the literature because of the scarcity of size controlled samples,
the spectral sensitivity to the sharpness of the corners of the
cubes, and the need to include radiation effects in theoretical
modeling.16,25,33,35–37 Theoretical modeling demonstrates that
dipole resonance modes supported by the silver nanocubes
are the origin of the features seen in the absorption spectra.
The peaks (maxima) in the extinction spectra are identified
with the resonance wavelengths of different plasmon modes.
These values and their dependence on cube size can be
predicted theoretically as long as radiation corrections are
included. Using Eqs. (1)–(4) we have calculated ε

(0)
k , σ

(0)
k ,

and τ
(0)
k for the numerous plasmon resonance modes of metal

nanocubes in the quasistatic approximation. Several of these

TABLE III. Calculated and measured resonance wavelengths of
silver nanocubes placed on a glass substrate.

Resonance wavelength High-frequency Low-frequency
(nm) mode mode

Electrostatic calculations 383 421
Second-order corrections 410 443
Experimental data (Ref. 31) 395 457

FIG. 4. (Color online) (a) SEM image of an ensemble of silver
nanocubes (NCs). Scale bar: 500 nm. (b) Absorption spectra of seven
types of silver nanocubes (in water). As the size of the nanocube
increases, the absorption peaks due to plasmon resonances shift
to longer wavelengths as highlighted by dashed lines. (c) A small
nanocube with rounded corners. (d) A large nanocube with sharp
corners.

modes are dipolar in nature, while the rest are of higher
multipole characteristics. As will be shown, it is sufficient
to consider just the dipole modes to interpret the absorption
spectra of nanocubes suspended in water. We have identified
the resonance modes with the strongest dipole moments
(Table IV). In the case of silver nanocubes in water, these
plasmon resonances, denoted D1–D8, occur at 468, 427,
405, 399, 398, 375, 339, and 332 nm, respectively, in the
electrostatic limit. In Fig. 5, the surface charge density
distribution functions [σ (0)

k (Q)] corresponding to each of
the eight modes are displayed. The color in these density
maps represents the local amplitude of the charge density
oscillation, as well as its relative sign. It can be appreciated
that these modes can couple strongly to electromagnetic wave
excitations due to the antisymmetric (dipole) distribution of
charges along one of the main axes of the cubic system.
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TABLE IV. Calculated resonance permittivities, resonance wave-
lengths, and dipole moments for dipole modes D1–D8, for a single
silver nanocube in water.

Mode ε
(0)
k /ε0 (water) 2πc/ω

(0)
k (water)

∣∣∣p(0)
k

∣∣∣ (relative)

D1 −8.0602 468.45 nm 0.9103
D2 −5.8599 426.61 nm 1.0000
D3 −4.7187 405.20 nm 0.6305
D4 −4.3716 398.99 nm 0.2749
D5 −4.2901 397.51 nm 0.1849
D6 −3.1001 374.66 nm 0.5928
D7 −1.0630 338.90 nm 0.6030
D8 −0.6858 332.06 nm 0.3915

Modes D1–D5 are part of a series of dipole plasmon modes
with their charge concentrated at the corners and along the
edges of the nanocubes. The modes differ in the number
of nodes the charge density has along the three orthogonal
edges (Nx,Ny,Nz). Modes with more nodes and shorter spatial
oscillation periods resonate at higher frequencies, yet their
dipole moments are weaker. Modes D7 and D8 are dipole
modes with charge density distributed over the faces of the
cubes. In our experience, the computation of the eigenvalues
λk and resonance wavelengths of the nanocubes converges
faster than the computation of the surface charge density
[σ (0)

k (Q)] as the number of patches used in the discretization
of the surface of the cube is increased. Mapping the charge
distribution becomes computationally demanding for modes
with short oscillation periods. For example, by using a large
number of patches for the cube (e.g., 9600 or more), more
detailed spatial oscillations of the charge density along the
cube edges are resolved for modes D3–D5. Thus, while our
resonance wavelength calculations and charge density maps
mostly coincide with peak absorbance wavelengths38 and the
electric-field maps presented in other works,38,39 previous
works reported on mode D3 as having (3, 4, 4) nodes and
our calculations identify the mode as having (5, 4, 4) nodes.
This inconsistency on the charge distribution for mode D3 may
be explained by the difference in the density of the meshes used
in the calculations.

FIG. 5. (Color online) Calculated surface charge distributions
for different dipole plasmon modes. Red and blue colors represent
positive charges and negative charges, respectively.

FIG. 6. (Color online) Comparison between calculated (solid
lines) and measured (open symbols) resonance wavelengths for five
dipole plasmon modes of silver nanocubes. The “×” symbols indicate
the wavelength of the major attenuation peak in experimental data
from Refs. 32 and 33.

With the dipole modes well characterized at the quasistatic
limit, we now turn to discuss the effect of the size of the
nanocube on the plasmon spectra. By using Eqs. (8)–(12),
the second-order corrections for the resonance wavelengths
were computed. The computational results for the resonance
wavelengths of the five strongest dipole plasmon modes are
plotted in Fig. 6 as a function of cube edge length, and are
compared to our experimental results, as well as results from
Refs. 32 and 33.

Figure 6 shows an overall good agreement between the
predictions of the outlined radiation correction theory and the
experimental data. Considering the experimental error associ-
ated with determining the resonance wavelength from the ex-
tinction spectra, particularly for overlapping absorption peaks,
the size dependence of the plasmon resonance wavelengths in
silver nanocubes was determined exceedingly well through the
calculations without the need for fitting parameters. Note that
modes D4, D5, and D8 may also contribute to the peaks at 400
and 350 nm, however, their contributions are less pronounced
due to their weaker dipole moments. In Fig. 6, a nonlinear
relationship between wavelength and cube size is revealed
both experimentally and computationally. Previously, a linear
relationship between the major plasmon resonance wavelength
and the cube size was hypothesized based on results from a
narrow range of sizes.32 Here, we show that a quadratic rela-
tionship between the resonance permittivity and the cube size
adequately reproduces the experimental results. There is no
one function that can relate the plasmon resonance wavelength
to the particle size, because of the role of the dispersion relation
of the material in determining the resonance wavelength.

A closer examination of the data suggests that there is
some discrepancy between the resonance values determined
computationally and experimentally for plasmon mode D1,
the mode with the longest resonance wavelength and the most
pronounced size dependence. The discrepancy is systematic,
with the numerical calculations predicting higher wavelength
values than the measured values. The discrepancy is less severe
for larger cube dimensions. The sensitivity of the resonance
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FIG. 7. (Color online) Comparison of the experimental absorp-
tion peak wavelengths (open symbols) with computational resonance
wavelengths for silver nanocubes in water with ideal sharp corners
(solid lines) and for cubes with rounded corners and edges (dotted
lines).

wavelength value to the corner geometry of the nanocubes is
a plausible explanation for these observations.35 The corner
geometry (i.e., sharpness of the corners) cannot be entirely
controlled during the chemical process of nanocube growth.
Because the silver nanoparticles first nucleate as spherical
seeds and their faceted structures only develop at a later stage,
syntheses of smaller silver nanocubes tend to result in particles
with more rounded corners, as evidenced by SEM microscopy
[Figs. 4(c) and 4(d)]. We anticipate that the corner geometry
will have the strongest influence on the properties of mode
D1 because the charge density associated with this mode
is the highest at the corners of the cube (Fig. 5).16 To test
this explanation, the computation of the resonance wavelength
of the dipole plasmon modes was performed for nanocubes
with smoothed (rounded) corners and edges. The computed
resonance wavelengths for silver nanocubes with rounded
corners and edges do indeed shift towards shorter wavelengths
and this blueshift is more appreciable for mode D1 than for
the other plasmon modes (Fig. 7). Thus, better agreement
between the radiation corrections and the experimental data
can be achieved by considering the radius of curvature of
the corners and edges in addition to the cube size. This
explanation is also supported by spectral shifts (blueshifts
of ∼10 nm in the position of the absorption peak attributed
to mode D1) we have observed as a consequence of aging
the silver nanocube suspensions (e.g., prolonged storage in
aerated solutions that results in blunt edges). Similar spectral
shifts have been reported, experimentally and theoretically,
for a range of plasmonic nanoparticles whose corners were
intentionally rounded or truncated.31,34–36,40

The interpretation of the absorption spectra of silver
nanocubes of different size has been in the past challenging
and inconsistent, because of the lack of a comprehensive
theoretical model and the limited set of experimental data. The
interpretation of the spectra was difficult because, regardless
of the size of the silver nanocubes, the strongest absorption
peak is always in the range 450–550 nm. When an additional
peak is observed at longer wavelengths, this absorption peak

is notably weaker and exceptionally broad. As was alluded
to, similarities between spectra of nanocubes of different
sizes in the range 450–550 nm are quite coincidental, and
tracking the most intense absorption peak (“×” symbols in
Fig. 6) does not coincide with the evolution of a single
plasmon mode with size. For small nanoparticles the strong
sharp absorption peak relates to plasmon mode D1, while for
large nanoparticles the strongest absorption is from plasmon
mode D2. Li et al. have correctly identified this trend
in calculated optical extinction spectra using the discrete
dipole approximation (DDA) method.41 In their spectra they
identified three peaks, which appear to correlate well with our
modes D1, D2, and D6 and their size-dependent shifts. But
the DDA method does not allow for resolving the full set of
resonance modes of the structure. As for the broadening of
the absorption peak associated with mode D1, particularly for
large nanocubes, Cortie et al. have suggested that it originates
from the distribution of sizes present in the experimental
sample. Our results support this explanation. Figures 6 and 7
show that the shift in resonance wavelength is the largest
for plasmon mode D1 with respect to variations in both the
edge length and the radius of curvature of the cube edges.
Thus, the absorption spectra of an ensemble of nanocubes
with some degree of shape inhomogeneity will display a peak
for mode D1 that is broader than the other peaks, and its width
will increase as the mean size of the nanocubes increases.
Our experimental spectra [Fig. 4(b)] show these features. An
additional parameter affecting the width of the absorption peak
is the quality of the resonance. Radiation loss increases with
the size of the particle, and the quality of the resonance decays.

Figures 6 and 7 suggest that the radiation corrections
are quite accurate. Indeed, it is clear from Fig. 6 that for
nanocubes with diameters d about

√
3 × 150 � 260 nm the

resonance wavelengths for modes D2, D3, D6, and D7
fall below 550 nm (∼2d), and the radiation corrections
predict these values accurately. In fact, this accuracy is even
higher because the aqueous media makes the actual incident
wavelength shorter. We note that all the features in the
extinction spectra of silver nanocubes have been explained
by a set of dipole resonance modes and radiation effects.
Quadrupole and higher-order plasmon resonance modes (i.e.,
“dark modes”) were not invoked, because they do not couple
to electromagnetic radiation in the electrostatic limit. When
the dimension of the particle is not negligible, charge os-
cillations on the surface of the plasmonic object acquire a
position-dependent phase. In DDA and finite element method
calculations, the simulated near-field intensity distribution
may appear to show the symmetry of a higher-order mode.25,41

Strictly speaking, the concept of a resonant eigenmode with
a well-defined symmetry is only valid in the electrostatic
limit.

Figures 3, 6, and 7 show that resonance wavelengths in-
crease (redshift) with the increase in nanoparticle dimensions.
This may have a positive effect because the ratio of the real to
imaginary parts of the permittivities of gold and silver is the
largest in the 600–1000-nm wavelength range and this larger
ratio leads to more strongly pronounced plasmon resonances
and higher field enhancements.21

The presented radiation corrections may be quite useful
for the calculation of resonance wavelengths for clusters
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FIG. 8. (Color online) Calculated resonance wavelengths of the
dominant dipole mode for face-to-face silver nanocube dimers on a
glass substrate in air, with various cube edge lengths a and gaps d .

of metallic nanoparticles. The overall dimensions of such
clusters may be comparable with the resonance wavelengths,
requiring the inclusion of retardation effects in modeling their
plasmonic response. Since nanoparticle clusters are used in
various applications, for instance, in surface enhanced Raman
scattering (SERS) and nonlinear optics studies, reliable and
efficient simulation tools may impact progress in these fields.
As an example, we present here the computational results
for resonance wavelengths of face-to-face nanocube dimers
on a glass substrate. The investigation of SERS in these
nanocube clusters has been previously reported.19,20,42 Figure 8
presents the computational results for various nanocube edge
lengths and various “gap-to-cube size” ratios. This figure
presents the dependence of one of the resonance wavelengths
on this ratio. The computational data from Fig. 8 may be useful
for the extraction of interparticle separations from extinction
cross-section measurements. For example, the data for 100-nm
nanocube dimers indicates that dimers with gaps of 5 and 6 nm
are easily distinguishable by their spectra.

V. CONCLUSION

In the paper, the radiation corrections for the analysis of
plasmon resonances in nanoparticles are presented. These
radiation corrections have been tested by comparing the
calculation results for a single sphere with the Mie theory, and
for nanorings with available experimental data. The results of
the extensive study of radiation corrections for silver cubic
nanoparticles of various dimensions and their comparison
with measured extinction spectra of nanocube ensembles is
reported. This study reveals that cubic nanoparticles have many
dipole plasmon modes with distinct resonance wavelengths.
For small nanocube dimensions, these wavelengths are closely
clustered and the linewidth of the extinction peak of the first
dipole mode D1 conceals the extinction peaks of other dipole
plasmon modes. As the dimensions of the silver nanocubes
are gradually increased, the resonance wavelengths of dipole
plasmon modes are increased, but with different rates, which
leads to their wider separation. This results in the emergence of
extinction peaks of other dipole plasmon modes in ensemble
absorption spectra and eventually in the dominance of the
extinction peak of the second plasmon mode D2. The radiation
corrections accurately describe this physical phenomenon and
also reveal that the mode D2 is less sensitive to the rounding of
nanocube corners and edges as well as to nanocube dimensions
variations than the mode D1. This suggests that on-resonance
excitation of mode D2 in an ensemble of nanocubes may be a
preferable approach to a reproducible plasmonic enhancement,
particularly in SERS studies.
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